Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 961
1.
CNS Neurosci Ther ; 30(5): e14742, 2024 05.
Article En | MEDLINE | ID: mdl-38715283

BACKGROUND: Adenosine A3 receptor (ADORA3) belongs to the adenosine receptor families and the role of ADORA3 in vascular dementia (VaD) is largely unexplored. The present study sought to determine the therapeutic role of ADORA3 antagonist in a mouse model of VaD. METHODS: The GSE122063 dataset was selected to screen the differential expression genes and pathways between VaD patients and controls. A mouse model of bilateral carotid artery stenosis (BCAS) was established. The cognitive functions were examined by the novel object recognition test, Y maze test, and fear of conditioning test. The white matter injury (WMI) was examined by 9.4 T MRI, western blot, and immunofluorescence staining. The mechanisms of ADORA3-regulated phagocytosis by microglia were examined using qPCR, western blot, dual immunofluorescence staining, and flow cytometry. RESULTS: The expression of ADORA3 was elevated in brain tissues of VaD patients and ADORA3 was indicated as a key gene for VaD in the GSE122063. In BCAS mice, the expression of ADORA3 was predominantly elevated in microglia in the corpus callosum. ADORA3 antagonist promotes microglial phagocytosis to myelin debris by facilitating cAMP/PKA/p-CREB pathway and thereby ameliorates WMI and cognitive impairment in BCAS mice. The therapeutic effect of ADORA3 antagonist was partially reversed by the inhibition of the cAMP/PKA pathway. CONCLUSIONS: ADORA3 antagonist alleviates chronic ischemic WMI by modulating myelin clearance of microglia, which may be a potential therapeutic target for the treatment of VaD.


Dementia, Vascular , Mice, Inbred C57BL , Microglia , Phagocytosis , Receptor, Adenosine A3 , Animals , Humans , Male , Mice , Brain Ischemia/metabolism , Brain Ischemia/pathology , Carotid Stenosis , Dementia, Vascular/pathology , Dementia, Vascular/metabolism , Microglia/metabolism , Microglia/drug effects , Microglia/pathology , Organic Chemicals , Phagocytosis/drug effects , Phagocytosis/physiology , Receptor, Adenosine A3/metabolism , Receptor, Adenosine A3/genetics , White Matter/pathology , White Matter/metabolism , White Matter/drug effects
2.
Front Psychiatry ; 15: 1369532, 2024.
Article En | MEDLINE | ID: mdl-38742135

Aims: This study aims to explore the gender differences in cognitive improvements after two months of atypical antipsychotic treatment in first episode schizophrenia (FES). Methods: 82 patients with FES, including 50 male patients and 32 female patients, were enrolled in the present study. Positive and Negative Syndrome Scale (PANSS) and MATRICS Consensus Cognitive Battery (MCCB) were respectively conducted to evaluate the clinical symptoms and cognitive function of patients with FES at baseline and after treatment. Repeated measure ANOVA was performed to compare gender differences in cognitive domains scores between baseline and 2-month follow-up. Stepwise liner regression model was performed to explore the effect factors of cognitive improvements in patients. Results: There was no significant difference in age of onset, education years, PANSS scores, duration of untreated psychosis and Olanzapine equivalent doses between male and female patients (all p > 0.05). In the comparisons of cognition function, male patients exhibited better performance in social cognition compared with female patients at baseline (t = 3.20, p < 0.05). After treatment, improvements of attention/vigilance and working memory were both found in male patients and female patients (attention/vigilance, F = 11.867, p < 0.05; working memory, F = 18.265, p < 0.05). In addition, improvement of speed of information processing was only found in female patients (F = 11.65, p < 0.01). Significant interaction between time and gender was found in speed information of processing (F = 4.140, p = 0.045). Stepwise liner regression model revealed that improvements of negative symptoms promote improvements of cognitive function in female patients (all p < 0.05). Conclusions: Our findings revealed gender differences of cognitive improvements in patients with FES after 2-month treatment. It provides new evidence for gender differences in cognitive symptoms of schizophrenia, and also provides preliminary clues for further individualized cognitive intervention strategies.

3.
Front Pharmacol ; 15: 1366529, 2024.
Article En | MEDLINE | ID: mdl-38711993

Introduction: It is known that patients with immune-abnormal co-pregnancies are at a higher risk of adverse pregnancy outcomes. Traditional pregnancy risk management systems have poor prediction abilities for adverse pregnancy outcomes in such patients, with many limitations in clinical application. In this study, we will use machine learning to screen high-risk factors for miscarriage and develop a miscarriage risk prediction model for patients with immune-abnormal pregnancies. This model aims to provide an adjunctive tool for the clinical identification of patients at high risk of miscarriage and to allow for active intervention to reduce adverse pregnancy outcomes. Methods: Patients with immune-abnormal pregnancies attending Sichuan Provincial People's Hospital were collected through electronic medical records (EMR). The data were divided into a training set and a test set in an 8:2 ratio. Comparisons were made to evaluate the performance of traditional pregnancy risk assessment tools for clinical applications. This analysis involved assessing the cost-benefit of clinical treatment, evaluating the model's performance, and determining its economic value. Data sampling methods, feature screening, and machine learning algorithms were utilized to develop predictive models. These models were internally validated using 10-fold cross-validation for the training set and externally validated using bootstrapping for the test set. Model performance was assessed by the area under the characteristic curve (AUC). Based on the best parameters, a predictive model for miscarriage risk was developed, and the SHapley additive expansion (SHAP) method was used to assess the best model feature contribution. Results: A total of 565 patients were included in this study on machine learning-based models for predicting the risk of miscarriage in patients with immune-abnormal pregnancies. Twenty-eight risk warning models were developed, and the predictive model constructed using XGBoost demonstrated the best performance with an AUC of 0.9209. The SHAP analysis of the best model highlighted the total number of medications, as well as the use of aspirin and low molecular weight heparin, as significant influencing factors. The implementation of the pregnancy risk scoring rules resulted in accuracy, precision, and F1 scores of 0.3009, 0.1663, and 0.2852, respectively. The economic evaluation showed a saving of ¥7,485,865.7 due to the model. Conclusion: The predictive model developed in this study performed well in estimating the risk of miscarriage in patients with immune-abnormal pregnancies. The findings of the model interpretation identified the total number of medications and the use of other medications during pregnancy as key factors in the early warning model for miscarriage risk. This provides an important basis for early risk assessment and intervention in immune-abnormal pregnancies. The predictive model developed in this study demonstrated better risk prediction performance than the Pregnancy Risk Management System (PRMS) and also demonstrated economic value. Therefore, miscarriage risk prediction in patients with immune-abnormal pregnancies may be the most cost-effective management method.

4.
Mar Pollut Bull ; 203: 116444, 2024 May 04.
Article En | MEDLINE | ID: mdl-38705002

An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.

5.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Article En | MEDLINE | ID: mdl-38745965

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

6.
Water Sci Technol ; 89(9): 2440-2456, 2024 May.
Article En | MEDLINE | ID: mdl-38747959

1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.


Dioxanes , Dioxanes/metabolism , Bacteria/metabolism , Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Phylogeny , Water Pollutants, Chemical/metabolism
8.
Org Lett ; 2024 May 09.
Article En | MEDLINE | ID: mdl-38722880

Represented herein is a simple thiol identified as an effective precursor to photochemically form a carbocation. Thanks to the thiyl radical rapid transformation to disulfide, which serves not only to stabilize the generated thiyl radical but also to allow the second electron transfer to form a carbocation. The resulting carbocations, including primary benzylic, secondary, and tertiary carbocations, can smoothly couple with nitrogen, oxygen, and carbon nucleophilic coupling partners as well as complex drug molecules, accompanied by elemental sulfur formation in air.

9.
Ann Med ; 56(1): 2337871, 2024 Dec.
Article En | MEDLINE | ID: mdl-38738394

Tendons are fibroblastic structures that link muscle and bone. There are two kinds of tendon injuries, including acute and chronic. Each form of injury or deterioration can result in significant pain and loss of tendon function. The recovery of tendon damage is a complex and time-consuming recovery process. Depending on the anatomical location of the tendon tissue, the clinical outcomes are not the same. The healing of the wound process is divided into three stages that overlap: inflammation, proliferation, and tissue remodeling. Furthermore, the curing tendon has a high re-tear rate. Faced with the challenges, tendon injury management is still a clinical issue that must be resolved as soon as possible. Several newer directions and breakthroughs in tendon recovery have emerged in recent years. This article describes tendon injury and summarizes recent advances in tendon recovery, along with stem cell therapy, gene therapy, Platelet-rich plasma remedy, growth factors, drug treatment, and tissue engineering. Despite the recent fast-growing research in tendon recovery treatment, still, none of them translated to the clinical setting. This review provides a detailed overview of tendon injuries and potential preclinical approaches for treating tendon injuries.


Genetic Therapy , Tendon Injuries , Tissue Engineering , Wound Healing , Tendon Injuries/therapy , Tendon Injuries/physiopathology , Humans , Wound Healing/physiology , Animals , Tissue Engineering/methods , Genetic Therapy/methods , Platelet-Rich Plasma , Tendons , Stem Cell Transplantation/methods , Intercellular Signaling Peptides and Proteins/therapeutic use , Intercellular Signaling Peptides and Proteins/metabolism
10.
CNS Neurosci Ther ; 30(4): e14685, 2024 04.
Article En | MEDLINE | ID: mdl-38634270

OBJECTIVE: Neuronal precursor cells expressed developmentally down-regulated 4 (Nedd4) are believed to play a critical role in promoting the degradation of substrate proteins and are involved in numerous biological processes. However, the role of Nedd4 in intracerebral hemorrhage (ICH) remains unknown. This study aims to investigate the regulatory role of Nedd4 in the ICH model. METHODS: Male C57BL/6J mice were induced with ICH. Subsequently, the levels of glutathione peroxidase 4 (GPX4), malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, as well as the expression of divalent metal transporter 1 (DMT1) and Nedd4 were assessed after ICH. Furthermore, the impact of Nedd4 overexpression was evaluated through analyses of hematoma area, ferroptosis, and neurobehavioral function. The mechanism underlying Nedd4-mediated degradation of DMT1 was elecidated using immunoprecipitation (IP) after ICH. RESULTS: Upon ICH, the level of DMT1 in the brain increased, but decreased when Nedd4 was overexpressed using Lentivirus, suggesting a negative correlation between Nedd4 and DMT1. Additionally, the degradation of DMT1 was inhibited after ICH. Furthermore, it was found that Nedd4 can interact with and ubiquitinate DMT1 at lysine residues 6, 69, and 277, facilitating the degradation of DMT1. Functional analysis indicated that overexpression of Nedd4 can alleviate ferroptosis and promote recovery following ICH. CONCLUSION: The results demonstrated that ferroptosis occurs via the Nedd4/DMT1 pathway during ICH, suggesting it potential as a valuable target to inhibit ferroptosis for the treatment of ICH.


Cation Transport Proteins , Cerebral Hemorrhage , Ferroptosis , Nedd4 Ubiquitin Protein Ligases , Animals , Male , Mice , Brain/metabolism , Cerebral Hemorrhage/metabolism , Cerebral Hemorrhage/pathology , Ferroptosis/genetics , Mice, Inbred C57BL , Ubiquitination , Nedd4 Ubiquitin Protein Ligases/metabolism , Cation Transport Proteins/metabolism
11.
Gels ; 10(4)2024 Apr 20.
Article En | MEDLINE | ID: mdl-38667697

Repairing damaged tissue caused by bacterial infection poses a significant challenge. Traditional antibacterial hydrogels typically incorporate various components such as metal antimicrobials, inorganic antimicrobials, organic antimicrobials, and more. However, drawbacks such as the emergence of multi-drug resistance to antibiotics, the low antibacterial efficacy of natural agents, and the potential cytotoxicity associated with metal antibacterial nanoparticles in hydrogels hindered their broader clinical application. In this study, we successfully developed imidazolium poly(ionic liquids) (PILs) polymer microspheres (APMs) through emulsion polymerization. These APMs exhibited notable antibacterial effectiveness and demonstrated minimal cell toxicity. Subsequently, we integrated the APMs into a gelatin methacryloyl (GelMA)-polyethylene glycol (PEG) hydrogel. This composite hydrogel not only showcased strong antibacterial and anti-inflammatory properties but also facilitated the migration of human skin fibroblasts (HSF) and human umbilical vein endothelial cells (HUVECs) and promoted osteogenic differentiation in vitro.

12.
Sci Total Environ ; 928: 172255, 2024 Jun 10.
Article En | MEDLINE | ID: mdl-38599412

This study attempts to bridge the current research gaps related to the environmental burdens of low-rank coal (LRC) and sewage sludge (SS) co-pyrolysis potentially. The life cycle assessment (LCA), energy recovery and sensitivity analysis were investigated for different proportions of LRC and SS (co-)pyrolysis. The results showed that the LRC/SS pyrolysis mitigated the environmental burden with an average improvement of 43 % across 18 impact categories compared with SS pyrolysis. The best net values of energy and carbon credits were identified in SL-4 with -3.36 kWh/kg biochar and -1.10 CO2-eq/kg biochar, respectively. This study firstly proposed an optimal LRC/SS co-feed proportion at 3 to 7, which achieves the acceptable environmental burden and satisfactory energy recovery. Moreover, sensitivity analysis demonstrated this proportion is robust and adaptable. LRC/SS co-pyrolysis is a promising and sustainable alternative for SS disposal, which could meet the imperative of carbon emission mitigation and resource recycling.

13.
Clin Transl Med ; 14(4): e1665, 2024 Apr.
Article En | MEDLINE | ID: mdl-38649789

BACKGROUND: White matter injury (WMI) is an important pathological process after traumatic brain injury (TBI). The correlation between white matter functions and the myeloid cells expressing triggering receptor-2 (TREM2) has been convincingly demonstrated. Moreover, a recent study revealed that microglial sterol metabolism is crucial for early remyelination after demyelinating diseases. However, the potential roles of TREM2 expression and microglial sterol metabolism in WMI after TBI have not yet been explored. METHODS: Controlled cortical injury was induced in both wild-type (WT) and TREM2 depletion (TREM2 KO) mice to simulate clinical TBI. COG1410 was used to upregulate TREM2, while PLX5622 and GSK2033 were used to deplete microglia and inhibit the liver X receptor (LXR), respectively. Immunofluorescence, Luxol fast blue staining, magnetic resonance imaging, transmission electron microscopy, and oil red O staining were employed to assess WMI after TBI. Neurological behaviour tests and electrophysiological recordings were utilized to evaluate cognitive functions following TBI. Microglial cell sorting and transcriptomic sequencing were utilized to identify alterations in microglial sterol metabolism-related genes, while western blot was conducted to validate the findings. RESULTS: TREM2 expressed highest at 3 days post-TBI and was predominantly localized to microglial cells within the white matter. Depletion of TREM2 worsened aberrant neurological behaviours, and this phenomenon was mediated by the exacerbation of WMI, reduced renewal of oligodendrocytes, and impaired phagocytosis ability of microglia after TBI. Subsequently, the upregulation of TREM2 alleviated WMI, promoted oligodendrocyte regeneration, and ultimately facilitated the recovery of neurological behaviours after TBI. Finally, the expression of DHCR24 increased in TREM2 KO mice after TBI. Interestingly, TREM2 inhibited DHCR24 and upregulated members of the LXR pathway. Moreover, LXR inhibition could partially reverse the effects of TREM2 upregulation on electrophysiological activities. CONCLUSIONS: We demonstrate that TREM2 has the potential to alleviate WMI following TBI, possibly through the DHCR24/LXR pathway in microglia.


Brain Injuries, Traumatic , Membrane Glycoproteins , Microglia , Receptors, Immunologic , White Matter , Animals , Male , Mice , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/genetics , Disease Models, Animal , Liver X Receptors/metabolism , Liver X Receptors/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , White Matter/metabolism , White Matter/pathology
14.
Soft Robot ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38648291

Fish tunes fishtail stiffness by coordinating its tendons, muscles, and other tissues to improve swimming performance. For robotic fish, achieving a fast and online fishlike stiffness adjustment over a large-scale range is of great significance for performance improvement. This article proposes an elastic-spine-based variable stiffness robotic fish, which adopts spring steel to emulate the fish spine, and its stiffness is adjusted by tuning the effective length of the elastic spine. The stiffness can be switched in the maximum adjustable range within 0.26 s. To optimize the motion performance of robotic fish by adjusting fishtail stiffness, a Kane-based dynamic model is proposed, based on which the stiffness adjustment strategy for multistage swimming is constructed. Simulations and experiments are conducted, including performance measurements and analyses in terms of swimming speed, thrust, and so on, and online stiffness adjustment-based multistage swimming, which verifies the feasibility of the proposed variable stiffness robotic fish. The maximum speed and lowest cost of transport for robotic fish are 0.43 m/s (equivalent to 0.81 BL/s) and 7.14 J/(kg·m), respectively.

15.
Article En | MEDLINE | ID: mdl-38662092

This study aims to investigate the altered patterns of dynamic functional network connectivity (dFNC) between deficit schizophrenia (DS) and non-deficit schizophrenia (NDS), and further explore the associations with cognitive impairments. 70 DS, 91 NDS, and 120 matched healthy controls (HCs) were enrolled. The independent component analysis was used to segment the whole brain. The fMRI brain atlas was used to identify functional networks, and the dynamic functional connectivity (FC) of each network was detected. Correlation analysis was used to explore the associations between altered dFNC and cognitive functions. Four dynamic states were identified. Compared to NDS, DS showed increased FC between sensorimotor network and default mode network in state 1 and decreased FC within auditory network in state 4. Additionally, DS had a longer mean dwell time of state 2 and a shorter one in state 3 compared to NDS. Correlation analysis showed that fraction time and mean dwell time of states were correlated with cognitive impairments in DS. This study demonstrates the distinctive altered patterns of dFNC between DS and NDS patients. The associations with impaired cognition provide specific neuroimaging evidence for the pathogenesis of DS.

16.
Nat Commun ; 15(1): 2893, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38570498

In the realm of ferroelectric memories, HfO2-based ferroelectrics stand out because of their exceptional CMOS compatibility and scalability. Nevertheless, their switchable polarization and switching speed are not on par with those of perovskite ferroelectrics. It is widely acknowledged that defects play a crucial role in stabilizing the metastable polar phase of HfO2. Simultaneously, defects also pin the domain walls and impede the switching process, ultimately rendering the sluggish switching of HfO2. Herein, we present an effective strategy involving acceptor-donor co-doping to effectively tackle this dilemma. Remarkably enhanced ferroelectricity and the fastest switching process ever reported among HfO2 polar devices are observed in La3+-Ta5+ co-doped HfO2 ultrathin films. Moreover, robust macro-electrical characteristics of co-doped films persist even at a thickness as low as 3 nm, expanding potential applications of HfO2 in ultrathin devices. Our systematic investigations further demonstrate that synergistic effects of uniform microstructure and smaller switching barrier introduced by co-doping ensure the enhanced ferroelectricity and shortened switching time. The co-doping strategy offers an effective avenue to control the defect state and improve the ferroelectric properties of HfO2 films.

17.
Front Bioeng Biotechnol ; 12: 1342340, 2024.
Article En | MEDLINE | ID: mdl-38567086

Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.

18.
Acta Psychol (Amst) ; 246: 104248, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38598923

Well-being is one of the central topics in psychology, and research on this topic has shifted from emotional experiences to flourishing life in recent years. Seligman's PERMA model is a prominent theory in this shift. However, this model is proposed in Western culture and has yet to be empirically validated in the Chinese context. The present research aims to examine the applicability of the five-dimension PERMA-Profiler in Chinese culture, which has been developed based on the PERMA model. A sample of 1468 Chinese adults participated in the research. After translation and validation, a series of psychometric analyses were conducted to examine the internal consistency reliability, construct validity, convergent and discriminant validity, and factorial invariance across genders. The PERMA-Profiler Chinese showed high Cronbach's alpha coefficients (α = 0.79-0.88), good divergent (r = -0.19 to -0.38) and convergent validity (r = 0.53-0.85), as well as satisfactory structural validity. Results of the structural validity demonstrated a better fit to the first-order model with five correlated factors after modification (χ2/df = 4.65, RMSEA = 0.058, SRMR = 0.030, CFI = 0.943, TLI = 0.924) than the second-order model with a higher-order factor of well-being. However, the engagement dimension of the PERMA-Profiler Chinese could be improved further. In conclusion, the PERMA model is applicable to the Chinese culture, and the PERMA-Profiler provides a valid measure of well-being for Chinese adults.

19.
Front Immunol ; 15: 1295011, 2024.
Article En | MEDLINE | ID: mdl-38562942

Background: CDKL3 has been associated with the prognosis of several tumors. However, the potential role of CDKL3 in immunotherapy and the tumor microenvironment (TME) in esophageal carcinoma (ESCA) remains unclear. Methods: In this study, Cox regression analysis was used to assess the predictive value of CDKL3 for ESCA outcomes. We systematically correlated CDKL3 with immunological features in the TME. The role of CDKL3 in predicting the efficacy of immunotherapy was also analyzed. Correlation analysis, Cox analysis and LASSO Cox regression were used to construct the CDKL3-related autophagy (CrA) risk score model. The relationship between CDKL3 expression and postoperative pathological complete response (pCR) rate in esophageal squamous cell carcinoma (ESCC) patients undergoing neoadjuvant chemoradiotherapy (nCRT) was evaluated using Immunohistochemical staining (IHC). The relationship between CDKL3 expression and autophagy induction was confirmed by immunofluorescence staining and western blot, and the effect of CDKL3 expression on macrophage polarization was verified by flow cytometry. Results: High expression of CDKL3 was found in ESCA and was associated with poor prognosis in ESCA. Moreover, CDKL3 expression was negatively correlated with tumor-infiltrating immune cells (TIICs), the integrality of the cancer immunity cycles, and anti-tumor signatures, while CDKL3 expression was positively correlated with suppressive TME-related chemokines and receptors, immune hyperprogressive genes, and suppressive immune checkpoint, resulting in immunosuppressive TME formation in ESCA. An analysis of immunotherapy cohorts of the ESCA and pan-cancer showed a better response to immunotherapy in tumor patients with lower CDKL3 levels. The CrA risk score model was constructed and validated to accurately predict the prognosis of ESCA. Notably, the CrA risk score of ESCA patients was significantly positively correlated with M2 macrophages. Furthermore, knockdown CDKL3 in KYSE150 cells could inhibit autophagy induction and M2 macrophage polarization. And, radiation could downregulate CDKL3 expression and autophagy induction, while ESCC patients with high CDKL3 expression had a significantly lower response rate after nCRT than those with low CDKL3 expression. Conclusion: CDKL3 may play an important role in anti-tumor immunity by regulating autophagy to promote the formation of immunosuppressive TME, thus playing a critical role in the prognosis of ESCA.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Neoplasms/genetics , Tumor Microenvironment , Autophagy , Blotting, Western , Immunosuppressive Agents , Protein Serine-Threonine Kinases/genetics
20.
J Cancer Res Clin Oncol ; 150(4): 188, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38602568

BACKGROUND: We aimed to comprehensively analyze the clinical value of immune-related eRNAs-driven genes in lung adenocarcinoma (LUAD) and find the potential biomarkers for prognosis and therapeutic response to improve the survival of this malignant disease. MATERIALS AND METHODS: Pearson's correlation analysis was performed to identify the immune-related eRNAs-driven genes. Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were used to construct this prognostic risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to investigate the underlying molecular mechanism. The single sample gene set enrichment analysis (ssGSEA) algorithm was conducted to evaluate the immune status based on the signature. The quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate the expression value of the signature genes between LUAD tissues and adjacent lung tissues. RESULTS: Five immune-related eRNAs-driven genes (SHC1, GDF10, CCL14, FYN, and NOD1) were identified to construct a prognostic risk signature with favorable predictive capacity. The patients with high-risk scores based on the signature were significantly associated with the malignant clinical features compared with those with low-risk scores. Kaplan-Meier analysis demonstrated that the sample in the low-risk group had a prolonged survival compared with those in the high-risk group. This risk signature was validated to have a promising predictive capacity and reliability in diverse clinical situations and independent cohorts. The functional enrichment analysis demonstrated that humoral immune response and intestinal immune network for IgA production pathway might be the underlying molecular mechanism related to the signature. The proportion of the vast majority of immune infiltrating cells in the high-risk group was significantly lower than that in the low-risk group, and the immunotherapy response rate in the low-risk group was significantly higher than that in the high-risk group. Moreover, BI-2536, sepantronium bromide, and ULK1 were the potential drugs for the treatment of patients with higher risk scores. Finally, the experiment in vivo and database analysis indicated that CCL14, FYN, NOD1, and GDF10 are the potential LUAD suppressor and SHC1 is a potential treatment target for LUAD. CONCLUSION: Above all, we constructed a prognostic risk signature with favorable predictive capacity in LUAD, which was significantly associated with malignant features, immunosuppressive tumor microenvironment, and immunotherapy response and may provide clinical benefit in clinical decisions.


Adenocarcinoma of Lung , Lung Neoplasms , Humans , Prognosis , Enhancer RNAs , Reproducibility of Results , Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Tumor Microenvironment
...